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Digital Frequency Multipliers Using
Multisection Two-Strip Coupled Line

IWATA SA’~GAMI, NOBUSHIRO MIKI, M~MBER, IEEE, NOBUO NAGAI, MEMBER, IEEE, AND KOZO
HATORI, SENIORMEMBER, IEEE

Abstract-This paper describes new networks which acts as digital

frequency multipliers such as donbler, tripler, and so on for input clock
frequency. Tire networks consist of cascadedsectionsof uniform lossless
commensurate coupled-transndwion-rmes and three reaitiors of II-
structure, and the proposed muftipfiers are quite new in the S&W of being

brdlt without using active or nordbwar circuit elements. The theoretical

and experimental reaufts for a conpled-line digitRI frequency doubler are

compared and found to be in good agreement.

I. INTRODUCTION

A CONSTANT-RESISTANCE distributed coupled-line

network consisting of cascaded sections of uniform

lossless commensurate two-strip coupled transmission line

and three resistors of II-structure, which was primarily

reported in microwave region as an amplitude equalizer

[1], is treated and the time domain behaviors of the

coupled-line network are discussed,

Generally speaking, the analysis and synthesis of the

distributed line or coupled-line network have received

much attention in the frequency domain [ 1]–[5], but rela-

tively little in the time domain [6]– [8]. However, the time

domain analysis and its application have become increas-

ingly important with the advent of fast rise-time pulse

techniques, high-speed microminiature circuits, and the

computer industry [9]. The output voltage waveform for

an arbitrary input voltage waveform can be readily ob-

tained from the impulse response of the network under

consideration and the convolution theorem. Therefore, the

Fourier-transform, Laplace-transform, and z-transform are

well-known techniques to derive the impulse response

from the transfer function of the distributed line or cou-

pled-line network [7], [10]. Thus, we can investigate the

time domain properties of these networks originated in

microwave frequency range.
Here, by using z-transform and signal flow graph tech-

niques, it is clarified that digital frequency multipliers

such as doubler, tripler, and so on for input clock

frequency can be constructed from the constant-resistance

coupled-line networks of multisection without using active

or nonlinear circuit elements. Several investigators [11 ]–

[13] have reported the results on the frequency multipliers,

but all of these contain active elements as the constituents.
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The proposed digital frequency multipliers are quite new

in the sense of being built with only passive elements and

also of preparing equiamplitude pulses according to the

principle of superposition every time interval 27, where

27= 21/0: 1 is the length of coupled-line of one section

and o is the speed of light in the medium. The equiampli-

tude pulses with period 2T may be composed of the

returning wave superposed at the output port. Therefore,

on designing the proposed digital frequency multipliers,

the time interval 27 or the coupled-line length 1 must be

chosen so as to become one m th (m= 2,3,. ..) as long as

the period of input clock frequency. The experimental

results showing an excellent agreement with theory are

presented for the digital frequency doubler.

II. SIGNAL FLOW GRAPH FOR

CONSTANT-RESISTANCE COUPLED-LINE NEWORK

The network under consideration is shown in Fig. 1.

The symmetry of this network allows the use of the

method of even- and odd-mode excitations at the two

ports Al and Az. The equivalent circuits of both even and

odd modes are shown in Fig. 2. The y,j and yOi (j=

1,2,..., n) are the even- and odd-mode normalized char-

acteristic admittances. The ~ej and tej (i= 1,2,..0, n+ 1)

are the reflection and transnussion coefficients of the even

mode, and rOj and tojare also those of odd mode. The g,

and gz are normalized conductance. These y,i, yOi, g,, and

gz have following relations:

Y.iY.i = 1> fori=l,2,. ... n (1)

171(gl +%2)=1. (2)

Fig. 3 shows reflected and transmitted waves at a discon-

tinuity interface and its equivalent signal flow graph. The

reflection coefficient r and transmission coefficient tat the

discontinuity interface are defined as

b ya ‘y~~=.=—
a

(3)
ya +yb

c 2=
t=—.

a Ya ‘yb
(4)

where ya and yb are the normalized characteristic admit-

tances, and Ia 12, Ib 12, and Ic 12 denote the incident power

from the left, its reflected power and its transmitted power,
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Fig. 2. Equivalent circuits. (a) Even mode. (b) Odd mode.

(a) (b)

Fig. 3. (a) Reflected and transmitted waves at a discontinuity inter-
face. (b) Its equivalent signal flow graph, where both incident waves
from the left and from the right are considered.

respectively. From Ic 12= Ia 12– Ib 12

t2=l–r2. (5)

Using (1) and (2), the reflection and transmission coeffi-

cients of the equivalent circuit shown in Fig. 2 are given

by

~ ,=_r ,= Ye(j–l)–.Yej

eJ
forj=2,3,. ... n

‘J J“.(j– 1) ‘Y.j ‘

(6a)

re, = —r-o,=(1-YeJ/(l +Ye,) (6b)

‘e(n+ 1) = -’0(.+1) =(Ye” -gI)/(Yen +gl) (6c)

2vY.(j– I)Ye-j

tej= toj= 9 forj=2,3, ” o“,n
Ye(j - 1) ‘Y.j

(7a)

te~‘to~ ‘2= /(1 ‘Y.1) (7b)

te(n+l) =to(n+~) =2G /(Yen +gl) (7C)

where t~j= 1 –ret., j= 1,2,. . . , n +1. Since each equivalent

circuit for even and odd modes shown in Fig. 2 has (n+ 1)

discontinuity interfaces and n commensurate lossless

transmission-line sections, an equivalent signrd flow graph

for each mode can be obtained by having the com-

mensurate transmission-line sections looked on as delay

operators and replacing the discontinuity interfaces with

the signal flow graph as shown in Fig. 3(b). Fig. 4 shows

1 t., 1’ 2 t., Y n t.. n’ (n.1) t.,m,(n.l)’

IE.EE31ZF
1, t- fi ~iy 2, t., 21 “, t.. “; ~iy (“.1 )

Fig. 4. A signal flow graph representation of the even-mode equivalent
circuit.

the resultant signal flow graph for the even mode except

for the terminated conductance gl. Let the delay operators

for the even and odd modes be Zei and zOi (i= 1,2,”0”, n),

respectively. For the homogeneous dielectric medium of

the coupled line, z = Zei = zOi. Since z – 1 is equal to transfer

function of lossless one-strip transmission-line having line

length 21, it can be written as

z-l=e –2j@[ = ~ –2ST (8)

where s =jti, ~ is a phase constant, and r is a time delay

for the line length 1. However, for the nonhomogeneous

medium, Z,i #zoi, Z,i #ze~, and zOi #zO~ (i= 1,2,. ... n;

k=l,2, ”.., n; i # k ). A signal flow graph representation

for odd mode is simply given by replacing rej, tej, and Zei

with roj, toj, and zOi in Fig. 4.

When an incident impulse d(t )/2 is applied to each

port 1 of these even- and odd-mode signal flow graphs, let

the each output response obtained from each port 11 be

be.(i) and boJt ). Consider the true voltage responses o,(t)

and IJ2(Z) at port A ~ and A2 shown in Fig. 1 [14]. Assumi-

ng the incident impulses tl(t)/2, 8(t )/2 for port Al and

incident impulses ?l(t)/2, – 8(t)/2 for port Az are simulta-

neously applied, then the ol(t) and 02(t) can be given as

q(t)= ?l(t)+be~(t )+bo. (t) (9)

oz(t)=be.(t )–bo.(t) (lo)

because the normalized impedances connected with port

A ~ and Az are unity. Here, O(t) is the Dirac delta function.

In the case of homogeneous coupled line, be,(t) and be.(t)

are given by [6]

be.(t) = ~ ge~tl(t – 2k~) (11)
k=O

boJt)= ~ gJ(t-2k7) (12)
k=O

where g,~ and gO~ are the amplitudes of the returning

waves for the even and odd modes at port 11 at t= 2kr. A

close inspection gives that ge~ is composed of the product
of even number of transmission coefficients and odd

number of reflection coefficients. This is also the same as

g~~. From (6) and (7), ge~ = –gok. mIUS

Ol(t)=iyt) (13)

02(t) =2beJt). (14)

Therefore, there are no reflected waves at port A ~, and

output response at port .42 for an incident unit impulse at

port Al can be analyzed by using only signal flow graph of

even mode. When t~j = 1 – ret, by the use of mathematical
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Fig. 5. The equivalent signal flow graph with lattice structures.

inductio~, we can substantiate that Fig. 4 is equivalent to

Fig. 5 having lattice structures.

III. OUTPUT WAVEFORMS OF THE

CONSTANT-RESISTANCE COUPLED-LINE NETWORX

FOR PERIODIC SQUARE PULSE INPUTS

Let the duration tl of incident periodic pulse be less

than 27, for the successive output pulses will not overlap.

If the normalized characteristic admittances for the even

and odd modes of two-strip coupled line of single section

are yO, and yOO,the coupling coefficient k and the coupling

K dB to the adjacent stripline are defined as [15]

k= (Yo. ‘~oe)/(.yOo ‘YO.) (15)

K= – 10log ~ok2. (16)

A. In the Case of Microwave C-Type Section of Single

Section

A microwave C-type section of single section can be

obtained from Fig. 1 for gl = O and n = 1 [3]. Its transient

responses are shown in Fig. 6. The sum of output voltages

of even number, S,t =X= ~vzi converges to unity and the
sum of output voltages of odd number, SOf=X:= ~v2i_ 1

converges to zero. From Fig. 6(c), the microwave C-type

section in stationary state can be considered as a delay

line which delays incident square pulse with period 4T for

2T.

B. In the Case of Constant-Resistance Coupled-Line Net-

work of Single Section

Consider the periodic square pulse with period 4r shown
in Fig. 6(a) as an incident pulsetrain, then the pulses of

even number in transient response derived from a single

pulse are superimposed and the pulses of odd number are

similarly superimposed. Let the sum of even pulses and

the sum of odd pulses be Set and SOt in the same manner

as above mentioned A:

s = (Yel +gl)(Yel –gl)
“ (1 +g,)(gl +y:)

sot =
gl(l –Ye2J

(1 +gl)(gl +L3)

(17)

(18)

where gl is variable parameter on a restriction of (2) and

y.] is determined by (16). Four cases of gl = O,ye:, yel, and
1 are stated as follows.

1) For gl = O, So, = O, S,, =1. This is the case of micro-

wave C-type section.
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Fig. 6. Input and output voltage waveforms of a microwave C-section
of single section having 3-dB coupling. (a) Input unit square pulsetrain
with period 47 and duration tl. (b) Transient response for a unit single
square puke. (c) Transient response for the pulsetrain of (a).

Trme

@)
Fig. 7. Output voltage waveforms of the treated network of single

section for unit puke train shown in Fig. 6(a). (a)gl =Y:. (b) g] =1.

2) For gl =ye~

sot =Set =0.5(1 –gI)/(l +gl) (19)

which means that output pulsetrain with period 2 r whose

amplitude is less than 0.5 can be obtained from

the incident unit pulse train with period 47. Thus, the

coupled-line network can be considered as a digital

frequency doubler consisting of passive elements.
3) For g, =y,l, SOt takes the maximum value and r.2 is

equal to zero. Therefore, the coupled-line network does

not produce any transient responses for a single pulse, and

makes only the amplitude of incident pulsetrain smaller.

4) For gl = 1, SO,= – S,, =0.5(1 –y~)/(1 +y~). The

coupled-line network is so called as a directional coupler

[16].

The cases of 2) and 4) are depicted in Fig. 7(a) and (b).

C. Digital Frequency Mult@ier Consisting of Constant-

Resistance Coupled-Line Network of Muhisection

Subsequently, we consider the coupled-line network of
multisection, because of expectation that digital frequency

multiplier may be realized without active elements. The

transfer function of the network shown in Fig. 1 is given

by

bJz) _ a. +alz ‘l+azz–2 +... +a~z–”
(20)

a.(z) l+ blz-’+bzz-2 +... +b~z-”

where b.(z) and an(z) refer to the output and input in

z-domain. The incident impulse train with period 2(n + 1)7

is written in z-domain as

a~(z)=l/[ l–z-(”+l)]. (21)
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Fig. 8. Input and output puketrain of the proposed digital frequency
tripler. (a) Input square pulsetrain. (b) Output square puketrain.

Multiplying (20) by (21) under the condition of aO =

al =..- = a., the partial fraction expansion of fq(z) is

b.(z)=;

[

b~+b;z-’ +... +b~_lz-n+l 1
+—

n l+ blz-’ +””. +b.z-” l–z-l
1

(22)

where a. = rel, E. = 1 + ~~=lbi, b~= ~~=lbi, b; =

Z~s2bi,” “ “ , and b~_l = b.. The impulse response of the

first term of bJz) vanishes and only that of the second

term remains in stationary state, because the denominator

of the first term is equal to that of (20). The resultant

waveform of (22) reveals an impulse train with period 27

and amplitude a. /E~.

In the case of n = 2, using Fig. 5, the transfer function is

‘given by

b2(z) ) -l+re3z-’
‘el ‘re2(1 ‘relre3 z—. (23)

az(z) 1 +~e2(~el +J-e3)z-1 +re,re3z-2 “

The incident unit impulse train with period 67 is

a2(z)=l/(1–z-3). (24)

Putting r,l = re2(l + re1re3)= r,3 and multiplying (23) by (24)

[

rei (2re1r,, +r~)+r~z-’ + 1 1- (25)b2(z)= ~ 1 +2r.lr~zz
–1 +rezz–z l–Z-I

where E2 = 1 + 2 rel rez + re~. The inverse z-transfoti shows

an impulse train with period 2 ~ and amplitude rei /E2 in

stationary state. If rel is known, re2 = rel /(1 + ret). The

value of rez exists in a range of O to 1. Therefore, the r,2

satisfies the realizability condition with respect to reflec-

tion coefficients of the coupled-line network. Fig. 8 shows

the input and output pulsetrains of a digital frequency

tripler. In the case of n= 3, following relations are ob-

tained:

rel = re4 re2 = re3 (26a)

re1r32+(1+-rJ)re2 -re, =0. (26b)

If rel is known, the quadratic equation (26b) has a root

satisfying 0< r,2 <1. Thus, the digital frequency four-time

multiplier is obtained. In the case of n= 4, numerical

calculation of a cubic equation of the reflection coeffi-

cients has shown that tie digital frequency five-time mul-

tiplier can also be realized.

Fig. 9. A photogaph of the proposed digital frequency doubler.

In general, the realization scheme is to make the coeffi-

cients of numerator polynomial of (20) equal as a.=
al =... = afl, but the physical realizability conditions, i.e.,

O<rel<l, r~<l, forj=2,3,.. .,nandr~n+l) <l must be

tested for each element number.

IV. EXPERIMENTAL RESULTS FOR DIGITAL

FREQUENCY DOUBLER

In the previous sections, the incident pulsetrain is limited

to square wave, but arbitrary input waveforms are availa-

ble by the help of the convolution theorem and impulse

response of the treated network. Fig. 9 shows a photo-

graph of an experimental digital frequency doubler con-

sisting of homogeneous coupled line network of single

section. The top is a ball point pem the second is a

photomask for the photoetching, and ~e third one is an

actual digital frequency doubler which was built without

using active or nonlinear circuit elements. The input and

output ports appear in the left side of the coupled line,

and the three resistorg of II-structure are installed be-

tween the right end of the coupled line and the ground.

These resistors were fabricated by thin films of Fe–Cr–Ti

–Al system produced by radio frequency reactive sputter-

ing [17], [18]. The dimensions of the coupled line depend

on its coupling [19], and the values of the normalized

conductance gl and g2 are also given by the coupling

through the relation of gl =y& and (l), (2), (15), and (16).

The design data of the experimental digital frequency

doubler are as follows: s= 0.12 mm, w= 3.94 mm, b= 8

mm, 1= 240 mm, K= 6.95 dB, ~ 2., = 130.8 Q,

~ ZOO=49.7 Q, R, =50/g, = 131.6 Q R2 =50/gz =44.4

Q, c’= 2.6, and S,, = 0.225, where thes, w, and b represent

the same notation with the ones that have been illustrated

in Fig. 3(a) of literature [19], 1 is the coupled-line length, K

is the couplirig in decibles, c’ is the relative permittivity,

ZOe and ZOO are the even- and odd-mode characteristic

impedzinces, respectively, R ~ and R z are resistances corre-

sponding to gl and g2, respectively, and Set is a theoretical

amplitude of output pulse train to the unit input puke-

train.

Fig. 10 shows the observed input and output voltage

waveforms, and their peak-to-peak values are about 820

mV and 185 mV, respectively. The ratio of both values

0.226 indicates an excellent agreement with theoretical

value 0.225. The time lag from the top to the next top of
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Fig. 11. Observed return loss of the proposed digital frequency dou-
bler.

the waveforms shown in Fig. 10(a) is about 5.2 ns, which

corresponds to clock frequency 192 MHz. If higher clock

frequencies and transmission medium with higher relative

permittivity than the experimental circuit are chosen,

smaller circuits in size can be made.
Fig. 11 shows the observed return loss in decibels which

is given by a ratio of reflected power to incident power at

the input port. It is less than – 20 dB or VSWR <1.22

over the frequency range of 100 MHz to 1600 MHz. This

means very good matching at the input port.

V. CONCLUSION

This paper has shown digital frequency multipliers such

as doubler, tripler, and so on for input clock frequency

can be designed without any active elements by using

cascaded multisection of two-strip coupled-transmission-

line and three resistors, On the digital frequency doubler,

very close agrgement has been obtained between experi-

ment and theory. The simplicity of construction and high-

speed capability make these multipliers attractive.
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