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Digital Frequency Multipliers Using
Multisection Two-Strip Coupled Line
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Abstract—This paper describes new networks which acts as digital
frequency multipliers such as doubler, tripler, and so on for input clock
frequency. The networks consist of cascaded sections of uniform lossless
commensurate coupled-transmission-lines and three resistors of II-

structure, and the proposed multipliers are quite new in the sense of being

built without using active or nonlinear circuit elements. The theoretical
and experimental results for a coupled-line digital frequency doubler are
compared and found to be in good agreement.

1. INTRODUCTION

CONSTANT-RESISTANCE distributed coupled-line

network consisting of cascaded sections of uniform
lossless commensurate two-strip coupled transmission line
and three resistors of Il-structure, which was primarily
reported in microwave region as an amplitude equalizer
[1], is treated and the time domain behaviors of the
coupled-line network are discussed.

Generally speaking, the analysis and synthesis of the
distributed line or coupled-line network have received
much attention in the frequency domain [1]-{5], but rela-
tively little in the time domain [6]-[8]. However, the time
domain analysis and its application have become increas-
ingly important with the advent of fast rise-time pulse
techniques, high-speed microminiature circuits, and the
computer industry [9]. The output voltage waveform for
an arbitrary input voltage waveform can be readily ob-
tained from the impulse response of the network under
consideration and the convolution theorem. Therefore, the
Fourier-transform, Laplace-transform, and z-transform are
well-known techniques to derive the impulse response
from the transfer function of the distributed line or cou-
pled-line network [7], [10]. Thus, we can investigate the
time domain properties of these networks originated in
microwave frequency range.

Here, by using z-transform and signal flow graph tech-
niques, it is clarified that digital frequency multipliers
such as doubler, tripler, and so on for input clock
frequency can be constructed from the constant-resistance
coupled-line networks of multisection without using active
or nonlinear circuit elements. Several investigators [11]-
[13] have reported the results on the frequency multipliers,
but all of these contain active elements as the constituents.
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The proposed digital frequency multipliers are quite new
in the sense of being built with only passive elements and
also of preparing equiamplitude pulses according to the
principle of superposition every time interval 27, where
27=2[/v: | is the length of coupled-line of one section
and v is the speed of light in the medium. The equiampli-
tude pulses with period 2r may be composed of the
returning wave superposed at the output port. Therefore,
on designing the proposed digital frequency multipliers,
the time interval 27 or the coupled-line length / must be
chosen so as to become one mth (m=2,3,---) as long as
the period of input clock frequency. The experimental
results showing an excellent agreement with theory are
presented for the digital frequency doubler.

II. SioNAL FLow GRAPH FOR
CONSTANT-RESISTANCE COUPLED-LINE NETWORK

The network under consideration is shown in Fig. 1.
The symmetry of this network allows the use of the
method of even- and odd-mode excitations at the two
ports A; and A,. The equivalent circuits of both even and
odd modes are shown in Fig. 2. The y,; and y,; (j=
1,2,---, n) are the even- and odd-mode normalized char-
acteristic admittances. The r,; and ¢,; (i=1,2,---,n+1)
are the reflection and transmission coefficients of the even
mode, and 7,; and ¢,; are also those of odd mode. The g,
and g, are normalized conductances. These y,;, y,,, g, and
g, have following relations:

fori=1,2,---,n

(1)
0
Fig. 3 shows reflected and transmitted waves at a discon-
tinuity interface and its equivalent signal flow graph. The

reflection coefficient r and transmission coefficient ¢ at the
discontinuity interface are defined as

yeiyoi = 17
&g +2g,)=1.

r= & =Ya % (3)
a ya +yb

p= &2 2VYaYs 4)
a Yoty

where y, and y, are the normalized characteristic admit-
tances, and |a|?, |b|?, and |c|? denote the incident power
from the left, its reflected power and its transmitted power,
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A constant-resistance coupled-line network of n-section.
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Fig. 2. Equivalent circuits. (a) Even mode. (b) Odd mode.
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Fig. 3. (a) Reflected and transmitted waves at a discontinuity inter-
face. (b) Its equivalent signal flow graph, where both incident waves
from the left and from the right are considered.

respectively. From |c|? =|a|? —|b|?

t2=1-—r2

©)

Using (1) and (2), the reflection and transmission coeffi-
cients of the equivalent circuit shown in Fig. 2 are given
by

_Yei—1 " Ves

r,,=-—r, , forj=2,3,--,n
! T Ve Fej
(62)
re1=_rol=(1_yel)/(1 +yel) (6b)
Tetne 1y = ~Totns ) =(Ven —81)/ (Ven +81) (6¢)

2VYo(j-1)Vej

L4

t, =t,,=—"2"1

forj=2,3,---,n
Yei—1) FVej

(7a)
(7b)
(79)

tel=tol=2 Vel /(1 +ye1)

te(n+1)=ta(n+l)=2 Ven81 /(yen +gl)

where 12, =1—r2,j=1,2,- - -, n+1. Since each equivalent
circuit for even and odd modes shown in Fig. 2 has (n+1)
discontinuity interfaces and n commensurate lossless
transmission-line sections, an equivalent signal flow graph
for each mode can be obtained by having the com-
mensurate transmission-line sections looked on as delay
operators and replacing the discontinuity interfaces with
the signal flow graph as shown in Fig. 3(b). Fig. 4 shows
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Fig. 4. A signal flow graph representation of the even-mode equivalent
circuit.

the resultant signal flow graph for the even mode except
for the terminated conductance g,. Let the delay operators
for the even and odd modes be z,; and z,; (i=1,2,- - -, n),
respectively. For the homogeneous dielectric medium of
the coupled line, z=z,; =z,;. Since z ~' is equal to transfer
function of lossless one-strip transmission-line having line
length 2/, it can be written as

Z—l=e—2j,BI=e—2s1- (8)
where s=jw,  is a phase constant, and = is a time delay
for the line length /. However, for the nonhomogeneous
medium, z,;%#z,;, z,; %2, and z,; 7%z, (i=1,2,-++,n;
k=12,.---,n; i¥#k). A signal flow graph representation
for odd mode is simply given by replacing r,, ¢, ;, and z,,
with r,;, ¢,,, and z,,, in Fig. 4.

When an incident impulse 8(¢)/2 is applied to each
port 1 of these even- and odd-mode signal flow graphs, let
the each output response obtained from each port 1, be
b,,(t) and b,,(t). Consider the true voltage responses v(¢)
and v,(¢) at port A, and A, shown in Fig. 1 [14]. Assum-
ing the incident impulses 6(¢)/2, 6(¢)/2 for port A4, and
incident impulses 8(¢)/2, —8(t)/2 for port 4, are simulta-
neously applied, then the v,(¢) and v,(f) can be given as

0i(#) =8(2) +b,,(¢) +b,,(1) ©®)
02() = b, (1) = b,(1) (10)

because the normalized impedances connected with port
A, and 4, are unity. Here, 8(¢) is the Dirac delta function.
In the case of homogeneous coupled line, b,,(¢) and b,,(t)
are given by [6]

ej?r

ben(t)= § gek8(t-2k'r) (11)
k=0

bo(1)= S g,8(t—2kr)

k=0

(12)

where g,, and g, are the amplitudes of the returning
waves for the even and odd modes at port 1, at t=2k7. A
close inspection gives that g,, is composed of the product
of even number of transmission coefficients and odd
number of reflection coefficients. This is also the same as
8ok From (6) and (7), g.;, = — g, Thus

0,(1)=8(¢) (13)
0y(£)=28,,(1). (14)

Therefore, there are no reflected waves at port 4;, and
output response at port A, for an incident unit impulse at
port A, can be analyzed by using only signal flow graph of

even mode. When 12, =1—r2, by the use of mathematical
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Fig. 5. The equivalent signal flow graph with lattice structures.

induction, we can substantiate that Fig. 4 is equivalent to
Fig. 5 having lattice structures.

III. OurPUT WAVEFORMS OF THE
CONSTANT-RESISTANCE COUPLED-LINE NETWORK
FOR PERIODIC SQUARE PULSE INPUTS

Let the duration ¢, of incident periodic pulse be less
than 27, for the successive output pulses will not overlap.
If the normalized characteristic admittances for the even
and odd modes of two-strip coupled line of single section
are y,, and y,,, the coupling coefficient k£ and the coupling
K dB to the adjacent stripline are defined as [15]

(15)
(16)

A. In the Case of Microwave C-Type Section of Single
Section

k= (yOo _yOe)/(yOO +y0€)
K= —10log ,,k>.

A microwave C-type section of single section can be
obtained from Fig. 1 for g, =0 and n=1 [3]. Its transient
responses are shown in Fig. 6. The sum of output voltages
of even number, §,, =22 ,v,; converges to unity and the
sum of output voltages of odd number, S,, =2 ,0,;_,
converges to zero. From Fig. 6(c), the microwave C-type
section in stationary state can be considered as a delay
line which delays incident square pulse with period 4t for
27,

B. In the Case of Constant-Resistance Coupled-Line Net-
work of Single Section

Consider the periodic square pulse with period 47 shown
in Fig. 6(a) as an incident pulsetrain, then the pulses of
even number in transient response derived from a single
pulse are superimposed and the pulses of odd number are
similarly superimposed. Let the sum of even pulses and
the sum of odd pulses be S,, and S, in the same manner
as above mentioned 4:

_ (V1 +8) (V1 —81)

er 17

(1+g,)(g,+»2) (1)
gl(l_yezl)

ot — i8

(1+g,)(g,+53) (9

where g, is variable parameter on a restriction of (2) and
V.1 is determined by (16). Four cases of g, =0, y3, y,;, and
1 are stated as follows.

1) For g, =0, §,,=0, S,,=1. This is the case of micro-
wave C-type section.
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Fig. 6. Input and output voltage waveforms of a microwave C-section
of single section having 3-dB coupling. (a) Input unit square pulsetrain
with period 47 and duration ¢,. (b) Transient response for a unit single
square pulse. (¢) Transient response for the pulsetrain of (a).
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Fig. 7. Output voltage waveforms of the treated network of single
section for unit pulse train shown in Fig. 6(a). (a)g; =y2. (b) g;=1.

2) For g, =3
ot=Set=0'5(1 —gl)/(1+gl) (19)

which means that output pulsetrain with period 27 whose
amplitude is less than 0.5 can be obtained from
the incident unit pulse train with period 4+. Thus, the
coupled-line network can be considered as a digital
frequency doubler consisting of passive elements.

3) For g, =y.,, S,, takes the maximum value and r,, is
equal to zero. Therefore, the coupled-line network does
not produce any transient responses for a single pulse, and
makes only the amplitude of incident pulsetrain smaller.

4) For g,=1, §,=-S,=05(1 _yezl)/(l +ye21)‘ The
coupled-line network is so called as a directional coupler
[16].

The cases of 2) and 4) are depicted in Fig. 7(a) and (b).

C. Digital Frequency Multiplier Consisting of Constant-
Resistance Coupled-Line Network of Multisection

Subsequently, we consider the coupled-line network of
multisection, because of expectation that digital frequency
multiplier may be realized without active elements. The
transfer function of the network shown in Fig. 1 is given
by

b(z) ag+ayz '+ayz7 +---+a,z7"

a,(2)  1+bz " ltbyz 2o 4Bz

(20

where b,(z) and a,(z) refer to the output and input in
z-domain. The incident impulse train with period 2(n+ 1)
is written in z-domain as

a,(z)=1/[1—z(+D], (21)
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Fig. 8. Input and output pulsetrain of the proposed digital frequency
tripler. (a) Input square pulsetrain. (b) Output square pulsetrain.

* Multipling (20) by (21) under the condition of a,=

a,=--- =a,, the partial fraction expansion of b,(z) is
b, +b/ - +b —n+1 '
b(z)——— 12 + 1 :
E, 1+b1z“+---+b,,z‘" -z~
(22)
where ag=r,, E,=1+ 2,_1 =30 ,b, b=

2ioby---, and b,,_l =b,. The 1mpulse response of the
- first term of b,(z) vanishes and only that of the second

term remains in stationary state, because the denominator

of the first term is equal to that of (20). The resultant
waveform of (22) reveals an impulse train with period 27
and amplitude a, /E,.
~ In the case of n=2, using Fig. 5, the transfer function is
‘given by
by(z) -
a2( z)

The incident unit impulse train with period 67 is
a,(z)=1/(1—-z73?). (24)
=r,(1+r,r.3)=r,; and multipling (23) by 29)

~2
+r,5z

2(1 +7, T eS)Z - ; (23)

1+re2(rel +re3)z

relre3z

Putting r,

(2 Folo T 1)+
+’e12 —2

by(2)= (25)

14+2r,47,,2" 1—z7!

where E, = 1+ 2r,,7,, +r2. The inverse z-transform shows
an impulse train with perlod 27 and amplitude r,; /E, in
stationary state. If r,, is known, r,, =r,/(1+r2). The
value of r,, exists in a range of 0 to 1. Therefore, the r,,
satisfies the realizability condition with respect to reflec-
tion coefficients of the coupled-line network. Fig. 8 shows

the input and output pulsetrains of a digital frequency

tripler. In the case of n=3, followmg relations are ob-

tained:
T =T,

(26a)
(26b)

re2=re3
“_,lre2 +(1 +r 1)’e2 r,,=0.

If r,; is known, the quadratic equation (26b) has a root
satisfying 0 <7,, <1. Thus, the digital frequency four-time
multiplier is obtained. In the case of n=4, numerical
calculation of a cubic equation of the reflection coeffi-
cients has shown that the digital frequency f1ve-t1me mul-
tiplier can also be realized.
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Fig. 9. A photograph of the pfoposed digital frequency doubler.

In general, the realization scheme is to make the coeffi-
cients of numerator polynomial of (20) equal as a,=
a,=--- =a,, but the physical realizability conditions, i.e.,
0<r,<1,75<1,forj=2,3,-+,nand r} e < 1 must be
tested for each element number.

IV. EXPERIMENTAL RESULTS FOR DIGITAL
FREQUENCY DOUBLER

In the previous sections, the incident pulsetrain is limited
to square wave, but arbitrary input waveforms are availa-
ble by the help of the convolution theorem and impulse
response of the treated network. Fig. 9 shows a photo-

graph of an experimental digital frequency doubler con-

sisting of homogeneous coupled line network of single
section. The top is a ball point pen, the -second is a
photomask for thie photoetching, and the third one is an
actual digital fréquency doubler which was built without
using active or nonlinear circuit elements. The input and
output ports appear in the left side of the coupled line,
and the three resistors of Il-structure are installed be-
tween the right end of the coupled line and the ground.
These resistors were fabricated by thin films of Fe—~Cr-Ti
—Al system produced by radio frequency reactive sputter-
ing [17), [18]. The dimensions of the coupled line depend
on its coupling [19], and the values of the normalized
conductances g, and g, are also given by thie coupling
through the relation of g, =y2, and (1), (2), (15), and (16).
The design data of the experimental digital frequency
doubler are as follows: §=0.12 mm, w=3.94 mm, b=8§
mm, /=240 mm, K=695 dB, V& Z, =1308 ,
Ve Z,,=49.7Q, R, =50/g,=131.6 , R, =50/g, =444
Q, ¢=2.6, and S,, =0.225, where the s, w, and b represent
the same notation with the ones that have been illustrated
in Fig. 3(a) of literature [19], / is the coupled-line length, K
is the coupling in decibles, €’ is the relative permittivity,
Z,, and Z,, are the even- and odd-mode characteristic
impedances, respectively, R, and R, are resistances corre-
sponding to g; and g,, respectively, and S,, is a theoretical
amplitude of output pulse train to the unit input pulse-
train.

Fig. 10 shows the observed input and output voltage
waveforms, and their peak-to-peak values are about 820
mV and 185 mV, respectively. The ratio of both .values
0.226 indicates an excellent agreement with theoretical
value 0.225. The time lag from the top to the next top of
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Fig. 10. Observed voltage waveforms of the proposed digital frequency
doubler. (a) Input voltage waveform. (b) Output voltage waveformf
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Fig. 11. Observed return loss of the proposed digital frequency dou-

bler.

the waveforms shown in Fig. 10(a) is about 5.2 ns, which
corresponds to clock frequency 192 MHz. If higher clock
frequencies and transmission medium with higher relative
permittivity than the experimental circuit are chosen,
smaller circuits in size can be made. \

Fig. 11 shows the observed return loss in decibels which
is given by a ratio of reflected power to incident power at
the input port. It is less than —20 dB or VSWR < 1.22
over the frequency range of 100 MHz to 1600 MHz. This
means very good matching at the input port.

V. CoNcLUSION

This paper has shown digital frequency multipliers such
as doubler, tripler, and so on for input clock frequency
can be designed without any active elements by using

[16]

cascaded multisection of two-strip coupled-transmission-
line and three resistors. On the digital frequency doubler,
very close agreement has been obtained between experi-
ment and theory. The simplicity of construction and high-
speed capability make these multipliers attractive.
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